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Abstract

Predicting the next-24-hour load in a buildifis essential for the optimal control of Himy, ventilating and air-conditioning (HVAC)
systems that use thermal/cool storage technology and also for cost and energy reduction of the non-storage systems. To fully integrate th
advantages of several models and improve the accuracy of forecasting load, the application of the combined forecasting method to hourly
load forecasting is presented in this paper. The method of Analytic Hierarchy Process (AHP) is employed to deduce the weights of each
model. A case study shows that the combined forecasting modeti s AHP may be better than the individual ones in predicting the
building’s hourly load for the future hours.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction on an extensive multiple linear regression (LR) technique
(see Appendix A for a brief review of the LR model) that pre-

dicts electrical demand up to twenty-four hours in advance.
MacArthur et al. [2] and Spethmann [6] developed a predic-

tion method based on the autoregressive integrated moving

Accurate prediction of the dynamic air-conditioning load
in a building is a key for HVAC system design. It is
also useful in HVAC operations including adjusting the

starting time of cooling to meet start-up loads, minimizing
or limiting the electric on-peak demand, load prediction to

average (ARIMA) modelgee Appendix B for a brief review
of the ARIMA model) and applied it to an optimal cold stor-

optimize costs and energy use for cool storage systemsage controller. Minoru Kawashima et al. [7] described an

and related energy and cosptimization needs in other

artificial neural network (ANN) modelsée Appendix C for

HVAC systems [1]. MacArthur et al. [2] described a method 5 prief review of the ANN model) to predict the next day’s
for optimal control of cool storage systems that requires tgtg] cooling load. Kreider and Wang [8] demonstrated an
forecasts of both cooling loads and non-cooling electrical gy tomated load predictor using the ANN model. Anstett and
demand. Stoecker et al. [3] and Braun [4] have showed kyeider [9] examined the accuracy of the ANN model for
that the load requirements of a building’s might be shifted energy predictions. The grey system theory was initially pre-
Significantly through management of the building’s thermal sented by Deng [10’11] and it has been Successfu”y used
storage. Forecasting cooling load for the future hours is jn the forecasting. The advantages of the grey model (GM)
very necessary in order to determine the optimal control (see Appendix D for a brief review of the GM model) in-
that minimizes the total operating cost of the thermal energy clude: (a) it can be used in circumstances with relatively little
storage systems. data; as low as four observations were reported [12] to esti-
Several prediction techniques have been previously inves-mate the outcome of an unknown system; and (b) it can used
tigated. Forrester and Wepfer [5] presented a method based first-order differential equation to characterize a system.
Therefore, only a few discrete data are sufficient to charac-
terize an unknown system. Hwang et al. [13] used the grey
relation to select the influential factors for power-load fore-
casting and build the forecasting model.
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Though there are various forecasting models mentioned For example, when the deviations of all the models are not
above, no single one has performed well enough becausédn the same direction, the errors can counteract partially each
each model can take just several or usually only one relevantother in the combined forecasting.
factor into consideration. In practical applications, engineers  The key of the combined forecasting method is to
often try several kinds of models to satisfy the actual need determine the weights of each model. There are a variety
better. The result of each forecasting model is compared andof methods available to determine the weights used in the
analysis has to be done by experienced forecasters to get theombination of forecasts. The equal weights (EW) method

best forecasting result.

To fully utilize the useful information from the models,
the combined forecasting nietd is introduced in this pa-
per. It is one of the most popular subjects in the field of

that uses an arithmetic average of the individual forecasts is
avery simple approach. It does not require information about
the precision of the forecasts or the correlations between
their errors. However, the method treats the forecasts as

forecasting methods [14-16]. The theory of the combined though they are exchangeable and indistinguishable from

forecasting method is based omertain linear cobination
of various results from different forecast models. The fitting
capacity of the combined forecasting model is greatly im-

one another. While this may be a reasonable assumption
when the models have similar ernariances, it is in general
not appealing. The minimum-variance (MV) method is a

proved, and the forecasted result will show higher precision Bayesian approach for conmting individual forecasts. The
[17]. Formulations have been developed in the past liter- combination weights proposed by the MV method are less

atures [18] for the optimatombined forecasting method,

reliable when the data are sparse or unstable [14]. In this

whose deviation reaches the minimum and is less than that ofpaper, Analytic Hierarchy ®cess (AHP) is employed to

each single forecasting method. The application of the com-

deduce the weights of each model.

bined forecasting method can combine separate methods and
integrate merits of each model to provide a more accurate re-

sult.

2. Principles of the combined forecasting method

3. Determining weights by Analytic Hierarchy Process
(AHP)

AHP is an intuitive method for formulating and analyzing
decisions. AHP has been applied to numerous practical

For a certain forecasting problem, assume the actual valueproblems in the last few decades [19]. Because of its intuitive

in periodz is y, (t =1,2,...,n) and there aren kinds

of forecasting models. Let the forecasting value in period
t by modeli is fi; (i =1, 2,...,m), then the corresponding
deviation ise;; = y; — fi;. Suppose the weights vector is
W = [w1, wy, ..., w,]", the combined forecasting model
can be expressed as follows:

m
$e=Y wifi (t=123....n)

1)
i=1
m
Y wi=1 2)
i=1
Eq. (1) can also be substituted by Eq. (2):
Y=FW (3)

Whel’e,/Y\z [31, Y2, ..., )A’n]T; F={[fitlnxm-
The forecasting error of combined model can be written
as:

m m

ee=y — fi = Z(wi)’t) - Z(wifit)

i=1 i=1
m m
= Z w; (yr — fir) = Z(wieit)
i=1 i=1

Although the combined model cannot improve the fore-

(4)

appeal and flexibility, many corporations and governments
routinely use AHP for making major policy decisions [20].
A brief discussion of AHP is provided in this section. More
detailed description of AHP and application issues can be
found elsewhere [21-24]. Application of AHP to a decision
problem involves four steps (see below).

Sep 1: structuring of the decision probleminto a
hierarchical model

It includes decomposition of the decision problem into
elements according to their monon characteristics and the
formation of a hierarchical model having different levels.
Each level in the hierarchy corresponds to the common
characteristic of the elements in that level. The topmost
level is the ‘focus’ of the problem. The intermediate levels
correspond to criteria and sub-criteria, while the lowest level
contains the “decision alternatives”.

Sep 2: making pair-wise comparisons and obtaining the
judgment matrix

In this step, the elements of a particular level are
compared pair-wise, with spect to a specific element in
the immediate upper level. A judgment matrix is formed
and used for computing the priorities of the corresponding

casting accuracy essentially, it may take advantage of theelements. First, criteria ammpared pair-wise with respect
“randomness” of the errors to reduce the forecasting error. to the goal. A judgment matrix, denoted Bswill be formed
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The semantic scale used in AHP
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Table 2
The average consistencies of random matrices (RI) [21-24]

Intensity of  Definition Description

importance

1 Equal importance ElementB; and B; are
equally important

3 Weak importance ofB; Experience and Judgment

over B; slightly favor B; over B;
5 Essential or strong impor- Experience and Judgment
tance strongly favorB; over B

7 Demonstrated importance  B; is very strongly favored
overB;

9 Absolute importance The evidence favoriBg
over B; is of the highest
possible order of affirma-
tion

2,4,6,8 Intermediate When compromise is
needed, values between
two adjacent judgments
are used

Reciprocals  If B; has one of the above A reasonable assumption

of the above judgments assigned to it

judgments when compared withB,

thenB; has the reciprocal
value when compared with
B;

using the comparisons. Each entby; of the judgment
matrix is formed comparing the row elemeBt with the
column elemenB;:

B=(b;j) (i,j=1,2,...,the number of criterip

()

The comparison of any two criteri@; and C; with
respect to the goal is made using questions of the type:
“of the two criteriaC; and C;, which is more important
and how much more?” Saaty [24] suggests the use of
a 9-point scale to transform the verbal judgments into
numerical quantities representing the valuesbgf The
scale is explained in Table 1. Larger number assigned to
the pair-wise comparisons meslarger differences between
criterion levels. Thus, in comparison to the numerical mode,
the verbal mode is expected to predict larger differences
between criterion levels. This implies a larger range between
the weights of the most preferred criterion level and the
least preferred criterion level. Provided the example of
a decision maker who prefers alternativa™slightly to
alternative ‘B”, the AHP interprets this verbal statement
as the numerical score 3, implying that the decision maker
prefers alternativel three times as much as alternatiBe
Given the meaning of the word ‘slightly’ in the regular use
of language, the score 3 is probably an overestimation of

Size @) 1 2 3 4 5 6 7 8 9
RI 000 000 058 090 112 124 132 141 145

Sep 3: local priorities and consistency of comparisons

Once the judgment matrix of comparisons of criteria
with respect to the goal is available, the local priorities of
criteria are obtained and the consistency of the judgments
is determined. It has been generally agreed that priorities of
criteria can be estimated by fimdj the principal eigenvector
w of the matrixB. That is:

(7
When the vectow is normalized, it becomes the vec-

tor of priorities of the criteria with respect to the goakax

is the largest eigenvalue of the matrix and the corre-

sponding eigenvectar contains only positive entries. The

consistency of the judgment matrix can be determined by a

measure called the consistency ratio (CR), defined as:

Cl (8)

CR= —
RI
where, Cl is called the consistency index aril, the
Random Index.
Cl is defined as:
Cl = (Amax—n)
(n-1)

wheren is the matrix size.

Rl is the consistency index of a randomly generated
reciprocal matrix from the 9-pot scale, with reciprocals
forced. Saaty [21-24] has provided average consistencies
(Rl values) of randomly generated matrices (up to size
11x 11) for a sample size of 500. TR values for matrices
of different sizes are shown in Table 2.

If CR of the matrix is higher, it means that the input
judgments are not consistent, and hence are not reliable.
Generally, it is acceptable only @R < 0.10. Using a very
similar procedure, the local priorities of alternatives with
respect to each criterion can be estimated.

Bw = )\.maxw

(9)

Sep 4: aggregation of local priorities

Once the local priorities of elements of different levels are
available as outlined in the previous step, they are aggregated
to obtain final priorities of the alternatives. For aggregation,
the following principle of hierarchic composition [24] is

the difference as perceived by the decision maker. The same

applies to the other verbal judgments in the AHP.
The entries;; are governed by the following rules:

bij >0, b,’j = 1/bj,', bii=1 for alli (6)

Because of the above rules, the judgment makriis a
positive reciprocal pair-wise comparison matrix.

Final local priority of decision alternative
n
=) (Local priority of decision alternative
i=1
with respect taC; x Local priority of C;

with respect to the goal (20)
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Cooling load prediction

e |

Degree of fitting to the historical data || Adaptability of the forecasting model Reliability of the forecasting result
ARIMA model LR model GM model ANN model

Fig. 1. The AHP model for cooling load combined forecasting.

Note that the above is a simple weighted summation. (4) Calculating the consistency inde3,;
The final priorities thus obtained represent the rating of (5) Selecting appropriate value of the random consistency
the alternatives in achieving the focus of the problem. In ratio from Table 2;
this study, local priorities of decision alternative stand for (6) Calculating the consistency ratioR;
the weight of each forecasting model in the combined (7) Checking the consistency of the pair-wise comparison
forecasting, respectively. matrix using the value oCR to check whether the
decision-maker’s comparisons were consistent or not;
(8) Obtaining the weights afdach model and using Eq. (1)
4. Combined forecasting model for Hourly cooling load to make the combined forecasting.
prediction using AHP
To further illustrate the AHP combined forecasting model,
To establish the combinddrecasting model using AHP,  an example of hourly cooling load prediction for an office
the common characteristics of cooling load prediction ought room is presented as follows.
to be known. Generally, forecasting is made on the basis of  To begin with, it is necessary to have a brief description
the historical data. So the degree of fitting to the historical of the room. The room is about 321.5 square meters; the
data is one of the elements that are under considerationexposed walls are all made of gravel concrete; the exposed
during the forecasting. In addition, the adaptability and the windows are all double-glazing windows; the glazing rate
reliability are another two important elements that are taken is 45% on the southern wall and 35% on the northern
into account in evaluating an individual forecasting model. wall; indoor heat source mainly come from the computers
Adaptability refers to the ability the forecasting model has and the occupants, which is about 60-70 W per square
to adapt to the fickle environments, and the reliability refers meters. The room is air-conditioned by fan-coil units that
to the accuracy of forecasting. are equipped with thermal mees from which the cooling
In this study, authors only consider the three elements load can be recorded. The thaal meter uses an ultrasonic
(degree of fitting to the historical data, adaptability and reli- flowmeter (type TFX; measure precision 4s1.0%) and
ability) that impact on the effect of cooling load prediction. two Pt100 temperature sensors (measure precision is) to
Thus, a hierarchical model having three levels for cool- detect the chilled water flow rates and the inlet/outlet water
ing load combined forecasting can be formed, as is showntemperatures, respectively, when the fan-coil unit is running.
in Fig. 1. In this model, cooling load prediction is reck- The actual cooling load of the room may be calculated by:
oned as the ‘focus’ of the problem, which is in the topmost . ,
level. The intermediate level corresponds to criteria that in- Qo) =¢p- G(@)- [IO(I) —h (T)] (11)
clude the three elements meted above, while the lowest ~ Where,
level contains four forecasting models that are reckoned as
S e . . o(7)
the “decision alternatives”. In order to predict cooling load
using the AHP combined model, the weights of each individ- Glr)=

= The actual cooling load at the timge W
The mass flow rate of the chilled water passing

ual forecasting model must be obtained in advance by the through fan-coil at the time, kg-s*

met_hod of AHP according to thactual S|tgat|on. The fol- t0(t) = The temperature of outlet water of fan-coil at the
lowing can be done manually or automatically by the AHP ) .

software: timez, °C

t;(t) = The temperature of inlet water of fan-coil at the
1) Constructing the pair-wise comparison matrices based timer, °C
on the experiments or expert; . _
(2) Calculating the priority vector for a criterion; ¢p = The mass specific heat of the chilled
(3) Calculatingimax; water, Jkg—t.cCc-1
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Fig. 2. Cooling load prediction by different forecasting models.
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Fig. 3. Comparisons of errors between different forecasting models.

To provide enough information for each forecasting The four individual forecasting models are used to
model, some other thermal parameters were real-timely practise the prediction in advance, respectively, to make
monitored including the indoor temperatures, the outdoor their pair-wise comparisons dhe relative priority of the
temperatures and the values of solar intensity. The solarcriteria in the intermediate level. Fig. 2 is the results of one
intensity was measured by solar radiometer (type CE183; summer day’s hourly cooling load prediction by different
manufactured by CIMEL Company of France; measurement individual forecasting model. Bi 3 shows the comparisons
precision+1.0%). of forecasted errors among these models. In this paper,
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Table 3 Table 4

Pair-wise comparison of four forecasting models with respect to the Local priority of four forecasting models with respect to the criterion |
criterion | (degree of fitting to the historical data) (degree of fitting to the historical data)

Degree of fitting ARIMA model LR model GM model ANN model Degree of fittingto ARIMA LR GM ANN Local

to the historical the historical data model model model model priority
data ARIMA model 1 y7 3 13 0.069
ARIMA model 1 17 1/3 1/3 LR model 7 1 3 3 ®45

LR model 7 1 3 3 GM model 3 13 1 1 Q0193

GM model 3 3 1 1 ANN model 3 Y3 1 1 Q0193

ANN model 3 ¥3 1 1 Amax= 4.008;Cl =0.00267;Rl = 0.90; CR=0.00297< 0.1 OK

the forecasted errors are defined as “the actual coolingTtaple s
loads minus the forecasted ones”. Known from Fig. 2 and Pair-wise comparison of four forecasting models with respect to the
Fig. 3, LR model has the best fitting to the historical criterion Il (adaptability of the forecasting model)

data, GM model and ANN model have a parallel better Adaptability ofthe ARIMA LR GM ANN Local
one, while ARIMA has the worst one. Thus, the pair-wise forecasting model model  model model model priority
comparison matrices for the criterion | (Degree of Fitting to ARIMA model 1 3 V3 1/3 0.143
the Historical Data) can be obtained, as is shown in Table 3.LR mOddeII ¥3 1 5 1/5 0.064
: : : : GM mode 3 5 1 13 0.288
The calculations for these items will be explained next for ANN model 3 : 3 1 B05

illustration purposes.

At first, the largest eigenvaluggay, and the correspond-
ing principal eigenvector of the judgment mat(ig;) can
be calculated, respectively, with the help of MATLAB 5.0 Table 6

Amax=4.198;Cl = 0.066; Rl =0.90; CR=0.0733< 0.1 OK

software [25] as follows: Pair-wise comparison of four forecasting models with respect to the
criterion Il (reliability of the forecasting results)
Amax = 4.008 (12a)  TReliabilty of the ARIMA LR GM  ANN Local
W= [0.112Q 0.8884 0.3148 0_314aT (12b) forecasting result model model model model priority
) o ] ) o ARIMA model 1 5 3 3 0522
__ Finally, the priority vectorw is obtained by normalizing | r model ¥5 1 V3 13 0078
W GM model Y3 3 1 1 0200

ANN model 13 3 1 1 0200
Amax=4.044;Cl =0.0147;RI = 0.90; CR=0.0163< 0.1 OK

. |: 0.1120 0.8884 0.3148 0.3148 :|T
Lt WY W W W

=1[0.069 0.545,0.193 0.193" (13)  reliability among the four forecasting models. Thus, the pair-
Now, estimating the consistency ratio is as follows: wise comparison matrices and priority vectors for reliability
The consistency indexl, can be calculated: canbe foundin Table 6. _ n
A 4.008— 4 In addition to the pair-wise comparison for the decision
Cl = Amax— "1 _ T =0.00267 (14) alternatives (the four forecasting models), it can be also used
n—1 4-1 to set priorities for all three criteria in terms of importance
Selecting appropriate value of random consistency ratio, of each in contributing to the overall goal (cooling load
RI, for a matrix size of four using Table 2, we fiftl = 0.90. prediction). Among the three criteria, the criterion of relia-
The consistency rati&CR, can be calculated as follows: bility should have théopmost priority to be considered, the
Cl  0.00267 adaptability has the lower one, while the degree of fitting to
CR= R = 090 — 0.00297 (15)  historical data is the most subordinate factor to be taken into

account in the cooling load forecasting. Thus, the pair-wise
comparison matrices and priorigctors for all the three cri-
teria can be obtained in Table 7.

Now, the weight of each model in the combined forecast-
ing can be found by combining the criterion priorities and
the priorities of each model to each criterion, as is shown
in Table 8. The calculations are given below for illustration
purposes.

As the value ofCR is less than 0.1, the judgments are
acceptable. The results are shown in Table 4.

From the characteristics of these models, the authors
think that GM model and ANN model equally have the
best adaptability in the cooling load prediction, and ARIMA
model is slightly worse than them, while LR model has the
least adaptability. Thus, the pair-wise comparison matrices
and priority vectors for adaptability can be found in Table 5.

Known from the forecastingesults in Figs. 2 and 3,  \\gjght of ARIMA model
ARIMA model is the best in terms of reliability, GM model
and ANN model are equally reliable. However, they are both = 0-078> 0.069+0.435x 0.143
slightly worse than ARIMA model. LR model is the worstin 4 0.487x 0.522=0.322 (16a)
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Weight of LR model
=0.078x 0.545+ 0.435x 0.064
+ 0.487x 0.078=0.108
Weight of GM model
=0.078x 0.193+ 0.435x% 0.288
+ 0.487x 0.200=0.238
Weight of ANN model
=0.078x 0.193+ 0.435x 0.505
+ 0.487x 0.200=0.332

(16b)

(16c)

(16d)

From the weights above, it is indicated that ANN model
may be considered as the best model in cooling load
forecasting, and ARIMA model takes second place, then
GM model and LR model next.

Table 7
Pair-wise comparison of criteria with respect to the overall objective
(cooling load prediction)

1113

Using the weights of each forecasting model in Table 8
and the combined forecastingrfnula (Eqg. (1)) as well as
the forecasted results by each individual forecasting model,
the cooling load prediction at the same time for the office
room is made once again by the combined forecasting
method, as is shown in Fig. 4. It is easy to see from Fig. 4
that the forecasted resultdbtained by the AHP combined
forecasting model have a favorable agreement with the
actual ones. To further demonstrate the validity of the
model established in this paper, comparisons of forecasting
errors are made betweenettAHP combined forecasting
model and the other forecasting ones, respectively (Please
see Fig. 5). As is shown in Fig. 5, the AHP combined
model has much better fored¢ag results than the LR
model in the future 24-hour forecasting. In addition, it
is easy to see from Fig. 5 that in the beginning of the
forecasting, the AHP combéd model is more accurate
than the other three models (ARIMA, GM and ANN).

Table 8
Weight of each model in the combined forecasting

- - — — Forecasting Criterion Final weight
Cooling load Degree of fit- Adaptability —Reliability of Local — ——
prediction ting to theof the fore-the forecast-priority model Degree of Adaptability Reliability — of each
historical datacasting model ing result letmg_to the of the fore- of the fore- forecasting

— historical casting casting model
Degree of fitting to1 1/5 1/7 0.078 data model result
the historical data
Adaptability of the 5 1 1 0435 0.078 Q435 Q487
forecasting model ARIMA model 0.069 Q0143 Q0522 Q322
Reliability of the 7 1 1 0487 LR model 0545 Q064 Q078 Q0108
forecasting result GM model 0193 0288 Q200 Q0238
Amax = 3.013;Cl = 0.0065;RI = 0.58; CR=0.012< 0.1 OK ANN model Q0193 Q0505 Q200 Q0332

x 10

5 T T I T T T T T T T T T T T T T T I T T T T
— Actual value
451 --e- Forecasted value by AHP combined model 7]

o
n

Cooling load (W)
w

ho
n

Degree of fitting to historical data
1.5 Y N N N N Y N N M B

|—I> Cooling load forecasting for the future
L1 L1 L1 | L1 L1

i0 12 14 16 18 20 22

0 2 4 6 8 10 12 14 16

Time (h)

Fig. 4. Cooling load prediction by AHP combined forecasting model.
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Fig. 5. Comparisons of forecasting errors between AHP combined model and the other ones.
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However, in the later forecasting hours (about after 10 increasing large error with time going on. It indicates that
hours), big forecasting errors by AHP combined model the weights in Table 7 may be befitting for the combined
occur uncertainly. 8metimes, they exceed those of ARIMA, model to forecast the future several-hour cooling load of the

Fig. 6. Comparisons of forecasting errors between three-combined model and four-combined model.

GM and ANN. This is because the LR model will produce building.
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To know the impact of LR model on the forecasting ac- The square of the vector is denoted':
curacy of the combined model, only three models (ARIMA, m
GM, ANN) are taken into accountin the_combination. Using ; _ Zeiz —eTe=(y—xi)T(y — Xk)
above-mentioned AHP method, the weight of ARIMA, GM =
and ANN can be obtained. They are 0.564, 0.218 and 0.219,
respectively. Fig. 6 shows the comparisons of forecasting ~ vy =k XTy =y Xk + KT XT XK (A-3)
errors between three-combined model and four-combined To determine the estimat® that minimizesJ, the
model. Seen from Fig. 6, although the forecasting errors derivative ofJ with respect tc is set to O:
of the three-combined model are smaller than those of the
four-combined model in most cases, their gaps are very lit- — =—2X"y4+2X"Xk=0 (A.4)
tle. Therefore, it is suggested that LR model be kept in the Ok k=R
combination for it may have useful informationin the course ~ Thus,k can be solved for

of forecasting. k= (XTX)*lXTy (A.5)

Then, prediction of at timem + 1 is:

5. Conclusions

Ym+1 = X1m+1k1 + x2,m+lk2 + -+ X mt1kn (A-G)
~ Inthis paper, the applicativof the combined forecast- After obtaining new observed data at time- 1, further
ing method in cooling load forecasting is proposed and the parameter estimation can be done by the recursive least
preliminary results show that has promised. It is neces-  squares method. In this study, the model is defined to have
sary for load forecasting to take various relevant factors into 49 inputs and one output. The inputs are the load-a4
consideration when evaluagreach model. Itis the precon-  hours, 24 ambient temperatures and 24 solar insolation data
dition of comprehensively evaluating each model. AHP has from 23 hours before to the current time. One output is the
the flexibility to combine quantitative and qualitative factors hourly load. When the next 24 current observed data are
and to handle different groups of actors. By breaking a prob- gptained, the parameters are re-estimated by the recursive
lem down in a logical fashion from the large, descending |east-squares method. The hourly ambient temperatures and

in gradual steps, to the smaller and smaller, several goodsp|ar insolation for the next 24 hours are required to predict
forecasting models can be connected and combined into anoyrly loads for the next 24 hours.

better one through the simple pair-wise comparison judg-
ments. The weights obtained in the paper may not be the
only ones or the best ones in the combined forecasting. TheyAppendix B. Brief review of ARIMA model [2,6]
should be amended from time to time based on different
actual situations. In spite of this, The AHP combined fore-  |n the statistical approach, a statistical model is fitted to
casting model is still a valuable method to be advantageouslythe observed data. By using an appropriate statistical model,
employed in the hourly load prediction. the procedure discussed in this paper provides a model that
takes into account the characteristics of both the load profiles
and the noise.

When y,; denotes the observation at timeande; is a
sequence of uncorrelated variables or residual error assumed
white noise, the model may be written as:

Appendix A. Brief review of LR model [1]

A multiple linear system model that has n inpqts, x2,
x3,...,X,) and one outputy) at timer can be described by

the following equation: Vi +aryi—1+azyi—2+ -+ apyi—p
y=kixi+koxo+ -+ kyxy (A.1) =e +bre,_1+boes_2o+---+ bqe,_q (B.1)
where, theks, ko, . . ., k, are constant unknown parameters.

At time 1 — m, the system is shown by Eq. (A.2)
using the vectorsy and k and a matrix,X: where,y =

This liner stochastic difference equation is called an au-
toregressive moving average model, denoted by
ARMA (p, ¢). Using a time-delay operatar; * (defined by

T
2 nl z~1y, = y;_1), the following equation is obtained:
— T
il ANy =B(z Nes (B.2)
X11 X12 ... Xin
X — X21 X22 ... X2n where,
Az H)=1 -1 -2, ... -p
Xml Xn2 .. Xmn (Z ) + a1z + asz + + apz

. — — _2 _
Then, the error vectog, between observed and predicted B(Z l) =1+biz bbbz P4 +byz7!

data is as follows: The types of industrial time series that people wish to

e=y— Xk (A.2) analyze frequently exhibit a particular kind of non-stationary
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behavior that can be represented by a stochastic model
which is a modified form of the ARMA model. The process
is defined by the following two equations:

A )ye=B(z e
yi=Vix, = (1 - Z_l)
The model corresponds to assuming that dite differ-
ence of the time serigs; } can be represented by a stationary

ARMA model. An alternative way of looking at the model
for d = 1 results from Eq. (B.3) to give:

., (B.3)

Xt

(B.4)

where,V is called the difference operator. In tum,has for
its inverse the summation operatfyrgiven by:

vi=Vx,=x—x_1

Vo =Sy =y i1+ y—2+ -

=4z 424 )y =(1-2Y Yy (B5)
The operatos?y, is similarly defined as:
X =82y =Sy + Sy-1+ Syr—2+ -+
t i
=Y > (B.6)
i=—00 h=—00
Also,
t J i
u=8y= Y > > wm (B.7)
j=—00i=—00h=—00

and so on. Eq. (B.3) implies that the time serigs}
can be obtained by integrating the stationary time series
{y:}d times. Therefore, the model mentioned above is
called autoregressive integrated moving model, denoted by
ARIMA (p.d, q).

When{x;} contains a period component with an elemen-
tary period ofs, Vy = (1 — z7*) is applied to{x,}d1 times,
and the ARMA(p, ¢g) model is applied to time serigs;},
the following model is obtained:

A(z_l)Vflx, = B(z_l)c, (B.8)
Next, the periodic variation pattern is obtained from the

time serieqc;}. By takingc;1, ¢11.+s, ¢r142s, - . . fOr any time

11 within the elementary period, the ARM#1, g1) model

is applied to this time series and the following model is

obtained:
P(e)a=0()e
P(z)=14a1z 5+ +apz P
0z %) =14B1z 5+ + Bgz 9
The prediction model for a time series containing an

elementary period of is obtained from Egs. (B.8) and (B.9)
as follows:

P(z")A(z 1) Vi = 0(z ") B(z Yer (B.10)

Furthermore, if(x;} has trend components and periodic-
ity, Eq. (B.10) is rewritten as Eq. (B.11):

P(z) A ) VIV, = 0(z7°)B(z e

(B.9)

(B.11)

mal Sciences 43 (2004) 1107-1118

where,{e;} is a white-noise sequence. This model is called
ARIMA (p,d, q) x (p1,d1,q1). The p, d, andg are order
numbers of the processes for autoregressive, integrated, and
moving average components, respectively. This means that
the dth deviation of the time series data is expressed by the
pth-order autoregressive term and gté-order moving av-
erage term. The1, d1, andg; refer to the same orders as
p,d, andq at nth previoustime. The value 24 fois chosen
since the time series data have a 24-hour cycle, which means
that the loads at an hour are correlated with previous data a
few hours before and one day before. In this study, the coeffi-
cientsay, az, ...,ap, b1, bo, ..., by, 01,02,...,0p, B1, B2,

..., Bq, are estimated using hourly loads of the previous day
after the suitable order numbeis, d, ¢, p1, d1, q1) are cho-

sen empirically. Then, hourly loads for the next day will be
predicted. The order numbers are usually zero, one, and two.

Appendix C. Brief review of ANN model [7,8]

A neural network basically consists of interconnected
neurons. Each neuron or node is an independent compu-
tational unit (Fig. 7), which works as per the following
equation:

y=f[Z(X1w1+X2w2+X3w3+---)+ﬂ] (C.1)
X1
Activation
function
X2
f[.] —— Output
Summing I
junction
Threshold

X3
® Connection weights

Fig. 7. Working of a neuron.

\

bias

Vi

Via Output Nodes

Connection
weights

Hidden Nodes

Input Nodes

Fig. 8. Typical feed forward network.
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where,y is the output from neuromn;, x2, x3, y are the input (c) Sep 3: the following first-order differential equation
values;wi, wz, w3 are the connection weightg;is the bias holds true:

vglue;f is the transfer function, typically sigmoidal function A ©

given by

_ 1
M=

o —|—ax(l) =u (D4)

(C.2) (d) Step 4: from step 3, we have

A typical neural network used in the present study is (1) {0 w\ _ap U
shown in Fig. 8. This is called feed forward type of network * &+ 1= <x Ok ;)e T (D.5)
where computations proceed along the forward direction 20 . &
only. There are three layers of neurons, namely input, hidden™ 'k+1) = k+1) - (k) (D.6)
and output layer. The output obtained from the output \where
neurons constitutes the network output.

The connection weights and bias values are initially ; _ a BT BTyN (D.7)
chosen as random numbers and then fixed by the results u
of a training process. Many alternative training processes 05V +xD©2)y 1
are available, out of which the present study adopted 05(x(1)(2)+x(l)(3)) 1
two popular schemes, namely back-propagation (BP) and g — (D.8)
cascade correlation (CC). The goal of any training algorithm :
is to minimize the global (mean sum squared) eriyr 05D — 1) xD 1
defined below: . (x (0" ). (O")) -
E= 150, - 12 cy VT (x?@.29@),....2%m) (D.9)
- 2 n n :

2D (k +1) is the predicted value of P (k + 1) at timek + 1.

where,0,, andz, are network and target output for anth The GM(L, 1) grey model can be easily extended to a

output node. The summation has to be carried out over a”GM(l, N) grey model. Note that the second index in the
output nodes for every training pattern. A pair of input and ; © ()
output values constitutes a training pattern. GM(l ) grey model stands fov variablestx; °, x5 .

In this study, the ANN model has 49 inputs and 1 output, xN )), and the differential equation can be written as follows:
which are the same as in the LR model, and 99 hidden layer (g
neurons. The network is trained using hourly data of the xl _|_ax§1> Zb B xil) (D.10)
past day. After the training, the hourly loads for the future
24 hours are predicted using the observed next-day weather

data. where, a, b1, by, ..., by_1 are unknown parameters. Ac-

cording to step 4 of the GK4, 1) grey model, these para-
meters can be estimated as follows:

Appendix D. Brief review of GM model [10,11] 5= (51,131,132, ...,IQN,l) _ (BTB)*lBTyN (D.11)
Grey forecasting model (GM) has three basic opera- where

tions: (1) accumulated generation, (2) inverse accumulated

generation, and (3) grey modeling. The grey forecasting 05" +x7@) @ .. 1P @

model uses the operations of accumulated generation to _0.5(x§1)(2)+x(1)(3)) x;l)(n) xl(vl)(3)

build differential equations. Intrinsically speaking, it has the B =
characteristics of requiring less data. The @M) grey
model, i.e., a single variable first-order grey model, is sum-

(@8] (@8] (1) (1)
marized as follows: —0.5(x; " (n — 1)ﬂl (m) x37(n) ... xy"(n)

D.12
(a) Xep 1: the initial sequence is © © O T ( )
= 2 D.1
L0 (x(o>(1)7x(o>(2)7 L x90, x(O)(n)) (D.1) YN (x 2),x7@3),...,x (n)) (D.13)
1 .
where,x @ (i) is the time series data at tinie The forecasts 0"‘5 ) are as follow:

(b) Sep 2: based on the initial sequenad®, a new N
@ ; ing - bi— _
sequencec'” is generated by the accumulated generating xil)(k_’_ 1) = (xio)(l) _ Z ,a lxi(l)(k+ 1)>e ak

operation (AGO), where, =

= (xD@), xP @), ..., xP@), x D)) (D.2) N,
k +3 ’7‘1x}1> (k + 1) (D.14)
SOED PRI (D.3) i=2

i=1
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